Critical transistors nexus based circuit-level aging assessment and prediction

نویسندگان

  • Nicoleta Cucu Laurenciu
  • Sorin Cotofana
چکیده

Accurate age modeling, and fast, yet robust reliability sign-off emerged as mandatory constraints in Integrated Circuits (ICs) design for advanced process technology nodes. In this paper we introduce a novel method to assess and predict the circuit reliability at design time as well as at run-time. The main goal of our proposal is to allow for: (i) design time reliability optimization; (ii) fine tuning of the runtime reliability assessment infrastructure, and (iii) run-time aging assessment. To this end, we propose to select a minimum-size kernel of critical transistors and based on them to assess and predict an IC End-Of-Life (EOL) via two methods: (i) as the sum of the critical transistors end-of-life values, weighted by fixed topology-dependent coefficients, and (ii) by a Markovian framework applied to the critical transistors, which takes into account the joint effects of process, environmental, and temporal variations. The formermodel exploits the aging dependence on the circuit topology to enable fast run-time reliability assessment with minimum aging sensors requirements. By allowing the performance boundary to vary in time such that both remnant and nonremnant variations are encompassed, and imposing a Markovian evolution, the probabilistic model can be better fitted to various real conditions, thus enabling at designtime appropriate guardbands selection and effective aging mitigation/compensation techniques. The proposed framework has been validated for different stress conditions, under process variations and aging effects, for the ISCAS-85 c499 circuit, in PTM 45 nm technology. From the total of 1526 transistors, we obtained a kernel of 15 critical transistors, for which the set of topology dependent weights were derived. Our simulation results for 15 critical transistors kernel indicate a small approximation error (i.e., mean smaller than 15% and standard deviation smaller than 6%) for the considered circuit estimated end-of-life (EOL), when comparing to the end-of-life values obtained from Cadence simulation, which quantitatively confirm the accuracy of the IC lifetime evaluation. Moreover, as the number of critical transistors determines the area overhead, we also investigated the implications of reducing their number on the reliability assessment accuracy.When only 5 transistors are included into the critical set instead of 15,which results in a 66% area overhead reduction, the EOL estimation accuracy diminishedwith 18%. This indicates that area vs. accuracy trade-offs are possible, while maintaining the aging prediction accuracy within reasonable bounds. © 2013 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate NBTI-induced Gate Delay Modeling Based on Intensive SPICE Simulations

One of the main reliability concerns in the nanoscale logic is the time-dependent variation caused by Negative Bias Temperature Instability (NBTI). It increases the switching threshold voltage of pMOS transistors and as a result slows down signal propagation along the paths between flip-flops, thus it may cause functional failures in the circuit. Therefore accurate prediction of circuit aging i...

متن کامل

Context aware slope based transistor-level aging model

Accurate age modeling, and fast, yet robust reliability sign-off emerged as mandatory constraints in IC design for advanced process technology nodes. This paper proposes a device-level aging assessment and prediction model using the signal slope as aging quantifier, that accounts not only for the intrinsic self-degradation but also for the influence of the surrounding circuit topology. Experime...

متن کامل

EE201C Final Report A survey for Circuit Aging

Circuit aging refers to the deterioration of circuit performance over time. All portions of a System-on-Chip (SoC), analog, digital logic, and memory, are affected by aging. In this survey, three main aging mechanisms will be introduced: Bias Temperature Instability(BTI), Time Dependent Dielectirc Breakdown(TDDB), Hot Carrier Injection(HCI). This survey also introduces a concept of circuit fail...

متن کامل

A Novel Design of Quaternary Inverter ‎Gate Based on GNRFET

   This paper presents a novel design of quaternary logic gates using graphene nanoribbon field effect transistors (GNRFETs). GNRFETs are the alternative devices for digital circuit design due to their superior carrier-transport properties and potential for large-scale processing. In addition, Multiple-valued logic (MVL) is a promising alternative to the conventional binary logic design. Sa...

متن کامل

Assessment of Landscape Connectivity and Prediction of Migration Corridors for the Baluchistan Black Bear (Ursus thibetanus gedrosianus Blanford, 1877) in the Southeastern Habitats, Iran

The Baluchistan Black Bear (BBB), a critically endangered subspecies (CR), is distributed in the southeastern Iran. Modelling of landscape connectivity of the BBBs among habitat patches can be insightful for the conservation managers working in Iran. Our study was designed to identify the potential corridors among 31 habitat patches of the BBBs in Iran using the circuit theory method. Habitat s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2014